

Math Virtual Learning

Grade 8 Solving Linear Systems: Graphing May 20, 2020

Math 8 Lesson: May 20, 2020

Objective/Learning Target: I can solve linear systems by graphing.

Warm-Up: Can you solve this puzzle?

Answer below

Solution: apple = 1.5 units basket = 6 units

Review: Equation in Slope-Intercept Form

Example:

$$y = 2x + 3$$

 1
 y -intercept
 y -intercept
 y -intercept
 y -intercept

Review: Graph an Equation

Graph:
$$y = 2x - 4$$

1 Plot the <mark>y-intercept</mark>. *The y-intercept is at (0,-4).*

② Count the slope and make more points. The slope is 2 or 2/1, so we will count "up 2, right 1" each time we make a new point.

③ Draw a line (arrows on both ends) through your points.

You can <u>check</u> that your graph is correct by plugging in any point on the line into the equation. For example, we can plug in the point (1, -2) using x=1 and y=-2. So: (-2) = 2(1) - 4, and when we solve -2 = -2

Video:

Take notes on a piece of paper as you watch this video.

How To: Graph a System of Equations

(1) Graph the first equation.

The y-intercept is at (0,2). The slope is 2 or 2/1, so we will count "up 2, right 1" each time we make a new point. The line is shown in **red**.

(2) Graph the second equation.

The y-intercept is at (0, -1). The slope is 1 or 1/1, so we will count "up 1, right 1" each time we make a new point. The line is shown in **blue**.

③ Identify the point(s) of intersection as the solution to the system of equations. These lines intersect at (-3,-4).

Example 1: System with One Solution (crosses at one point)

Example 2: System with No Solution

(same slope but different y-intercepts)

Example 3: System with Infinite Solutions

(same slope and same y-intercept)

Practice 1:

Answers on next slide Label each graph as one solution (state the point of intersection), no solution, or infinite solutions.

Practice 1:

Answer Key

This graph has *no* solution. The two lines are parallel (have the same slope and different y-intercepts) and will never share any points.

This graph has *one* solution. The two lines share the point (0,2) because they have different slopes and yintercepts.

This graph has *infinitely many* solutions. The two lines share every point infinitely because they have the same slope and yintercept.

Practice 2:

Answers on next slide

Graph and find the solution(s) to each of the systems.

Practice 2:

Answer Key

Additional Resources:

Solve a System of Equations with Graphing - IXL

Solving Systems of Equations with Graphing - Quia

Printable graph paper

Virtual graph paper